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AFSIM — An Air Force
Satellite Interactions Model

1. A CYLINDER MODEL FOR SCATHA

1.1 Introduction

Satellites in geosynchronous orbit at approximately 6.6 earth radii have been
found to charge up electrically during magnetic substorms (Deforest, - Rosenz).
This charging process, called spacecraft charging, leads at times to discharges
which couple radiated energy into spacecraft electronics, leading to circuit upsets,
malfunction of satellites, and, on occasion, complete cessation of satellite opera-
tion, It is necessary to calculate the details of the spacecraft charging process
in order to understand the physical processes taking place, to design spacecraft
which are less susceptible tc charging, and for the purpose of taking account of
potentials in the satellite sheath in the analysis of particle and field measurements
by instruments on board satellites.

The first theoretical treatment of spacecraft charging at geosynchronous orbit
was carried out by DeForest, - employing a current balance method. The satellite
is treated similarly to a Langmuir probe in a plasma. Taking into account back-

scattering, secondary emission, and photoemission, the steady-state floating

(Received for publication 19 June 1979)

1. DeForest, S, E. (1972) Spacecraft charging at synchronous orbit, J. Geophys.
Res. 77:651.

2. Rosen, A. (1975) Spacecraft Charging: Environment Induced Anomalies,
AIAA Paper 75-91, ATAA Conference, Pasadena, CA.
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potential of the body in a plasma is obtained. In this method, average values of
secondary emission currents and backscattered currents are employed.

For the purpose of the analysis of spacecraft charging and design, it is
necessary to be able to compute a three-dimensional distribution of potentials
on a satellite surface, lnuuyv:* developed a circuit model, in which currents are
injected at various points on a satellite surface. Approximate expressions for
the currents are obtained from probe theory, and approximate expressions for
secondary emission yields are employed.

I'he spherical satellite case has been treated in the steady state by Parker, .
and the time-dependent case, by Rothwell et a1 and Rothwell et al, . The method
of l’;ll‘kt‘l'4 consists of solution to the Poisson-Vlasov equations by the following
means: a series of iterative operations is carried out in which electron and proton
currents to the spacecraft surface are calculated first; then after the deposited
surface charge has been found, the Poisson equation is solved for the potential,
Currents to each surface node are obtained by tracing particle trajectories from
the node into the surrounding plasma to find the proportion of trajectories which
escape. The current and potential computations are iterated until a steady state
results.

It is not obvious that the plasma sheath surrounding a satellite has a steady
state, and in any case it is interesting to study time-dependent phenomena, par-
ticularly the emission of beams. For this reason, a time-dependent spherically
symmetric description of satellite charging was carried out by Rothwell et al. 4
The method of computer simulation of plasmas is employed, in which the motion
of thousands of electrons and tons are followed in their self-consistent electric
field. In the spherically symmetric model, the satellite surface is considered t
be covered with a single material. Backscattering and secondary emission as a
function of incident particle energy are considered. In addition, photoemission is
accounted for. Active control of the satellite potential 1s studied by simulation of

the emission of charged particles from the satellite surface. In this method, an

3. Inouye, G.T. (1975) Spacecraft Potentials in a Substorm Environment, in

Spacecraft Charging by Magnetospheric Plasmas, A, Rosen, Editor,
MIT Press, Cambridge, MA,

4. Parker, L.W. (1975) Computer Method for Satellite Plasma Sheath in Steady -

State Spherical Symmetry, AFCRL-TR-75-0410, AD A015 066.
5. Rothwell, P.L., Rubin, A.G., Pavel, A.L., and Katz, L. (1975) Simulation

of the Plasma Sheath Surrounding a Charged Spacecraft, in Spacecraft
Charging by Magnetospheric Plasmas, A, Rosen, Editor, MIT Press,
Cambridge, MA.

6. Rothwell, P.L., Rubin, A.G., and Yates, G.K. (1977) A Simulation Model of
Time-Dependent Plasma-Spacecraft Interactions, Proceedings of the
Spacecraft Charging Technology Conference, C.P. Pike and R. R. Lovell,
Editors, AFGL-TR-77-0051, AD A045 450,
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iitial configuration s set up in a spatial grid consisting of a spherical satellite,

a surrounding thermal plasma, and an outer boundary, An iterative calculation

1s carried out, in which each of the plasma particles 1s first moved in the existing
electric field, and the resulting charge configuration is emploved as a source in
the calculation of the electric field in the next time step. The computation 18
stepped forward in time with alternative computations of particle motion and elec-
tric field.

For the case of complex, real satellites, it is desirable to take into account
the geometrical details and matertals placements and properties characteristic of
these vehicles., A three-dimensional quasi-static code called NASCAP, developed
by Katz et al, : accomplishes this. The satellite 1s modeled by the hnte~cloment
method in a series of nested grids, each of which has a grid spacing twice as
large as the previous grid. Approximately one thousand surface cells are
accounted for, with fifteen materials on the spacecraft, Materials properties
such as backscattering and secondary emission as a function of energy as accounted
for, as 18 photoemission. The external magnetic field 1s included and satellite
spin is accounted for, The photosheath is calculated, as well as charging on each
satellite surface cell. Trajectories of particles from emitters on the satellite are
computed as well.

Because NASCAP does not treat phenomena ot the time scale of plasma oscil-
lations and does not treat space-charge effects, either in the plasma sheath or in
emitted beams, we have developed a time-dependent code in eylindrical symmetry
which treats these effects. This code 18 designed to study beam-plasma inter-
action effects, active control, beam neutralization, sheath stability, space-charge
effects in beam emission, and satellite surface material differential charging.

This code fills the gap between the geometrical simplicity of the spherically
symmetric code and the complexity of the 3-12 NASCAP code. It has the capability
of handling the detailed kinetics of space-charge effects omitted from the NASCAP
code and geometrical details which are unresolved in the SHEATH sphervically

symmetric code.

1.2 AFSIM Structure

A computer program has been developed to conduct numerical simulations of
plasma interactions with a satellite, assuming the satellite to be represented by an
infinitely long cylinder and treating the plasma as discrete particles,  The system
is assumed to be uniform along the axis of the satellite. A number of features of

7. Katz, 1., Parks, D.E,, Wang, S,, and Wilson, A. (1977) Dynamic Modeling
of Spacecraft in a Collistonless Plasma, Proceedings of the Spacecrant
Charging Technology Conference, C.P. Pike and R. R, Lovell, Editors,
AFGL=TR=T7-0051, AD A045 459,
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the actual satellite are incorporated into the model with as much flexibility as

possible to accommodate a wide range of conditions,

1.3 Features of the Model
1.3.1 PARTICLE MOQTIONS

I'he particles are treated as discrete objects rather than as fluid elements
but do not necessarily represent individual tons or electrons. The current
design associates with each computer particle a cluster of identical electrons or
tons so that the several million particles of the actual plasma are represented by

a few thousand computer particles. In contrast to an earlier model with spherical

particle is a constant for all particles.

Fhe particle motions are determined by the electric field produced by the
satellite and by the particles themselves, The program allows the satellite to be
charged to an arbitrary voltage and also allows the potential in the plasma far
from the satellite to be set, thus influencing the rate at which particles emerge
from the far plasma and enter the region near the satellite. The electric field 1s
calculated from the electric potential obtained by solving Powsson's equation in a
cylindrical geometry.

'hus, the equation to be solved for the potential ¢ 1s:

1 8 - o a ‘1_ J‘Q’

r ar ar 2

assuming untformity is the z-direction. With a coordinate transformation

S In r, this equation becomes:
»

which is the form for rectangular coordinates, using a modified density 1'2‘\,
This transformation is effected by choosing the radial gridpoints to have uni-

form increments in In r, rather than as an explicit coordinate transformation,

A standard Poisson-solving routine (Hm'knv_\'ﬂ\ for rectangular coordinate systems

is then employed to find the potential, using the moditied charge density, This

approach also requires an auxiliary routine to solve for the potential on the satel-

lite itself, to provide a necessary bounda ry condition for the Poisson solver., The

. Hockney, R.W. (1870) The potential calculation and some applications, in
Methods i Computational Physics, Vol, 9, Academic Press, N, V.
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auxiliary routine uses a moment series expansion to determine the satellite po-

tential in terms of the charge distribution and the constant value assumed for the
potential in the far plasma region.

No magnetic field has been incorporated into the program at this time, but 1t

would be feasible to add a magnetic field which s umiform along the direction of

the cylinder axis.

Particles are "lost"” from the system by striking the surface of the satellite
or escaping from the region studied, and are added to the system by a vartety of
emisston processes on the satellite, described below, or by entering into the
region studied from the surrounding plasma,

1.3,2 SECONDARY EMISSION

lons or electrons which strike the satellite are assumed to generate secondary
electrons, taking into account both the energy and angle of incidence of the impact-
ing particle to determine the vield of secondary electrons.

I'he equation used to evaluate the secondary emission for incident electrons

1 = exp (=(N B
§ C b exp (C_[1 - cos g])
« N l-')” 1 1

where
§  number of secondary electrons
E - energy of incident electrons
A - angle of incidence with respect to normal to surface.,

T'he parameters C , C,,
O 1

sectors of the satellite to reflect the properties of different materials with re-

and X . van be chosen to be different over the angular
‘

spect to secondary emission,
For incident ions, the equation used 1s:

R
a JE sec 8
O

where a and Xl reflect properties of the materials in each angular sector of the
.
satellite,

Faor either incident ions or incident electrons, the emitted secondary electrons

are assumed to have a Maxwellian velocity distribution:




2
f(v) « v~ exp

Ihe velocity dispersion "b" for the emitted electrons can depend on the species of
incident particle, and its value can easily be changed at execution time.

The direction of the velocity of the emitted particles has a cosine distribution
in angle with respect to the normal,

Che corresponding process for won emission (sputtering) has not been treated,
as the magnitude of that process i1s relatively small,

1.3.3 BACKSCATTERING

Inelastic collision of electrons with the satellite 1s treated as a backscattering
process, again taking into account the energy and angle of incidence of the impact-

ing particle to determine the yield. The equation used here is:

-m,cos ¢

i=B (A E )

where

3 number of backscattered electrons

E - energy of incident electrons

angle of incidence with respect to normal to surface.

The parameters .-'\“ and }%“ can likewise be set to different values on the different
angular sectors of the satellite.

The energy of the emitted particles is directly related to the energy of the
incident particles, according to f(v) x v’ l-f:, for incident energy E, provided
mg \': 2 < E, and again a cosine distribution in angle is assumed,

As with the sputtering process, backscattering of ions is neglected,

1.3.4 PHOTOEMISSION

The emission of photoelectrons from the satellite surface 1s treated in a
manner similar to secondary emission, taking account of the incidence angle of
solar illumination and the photoemissive coefficients of the different sectors of

the satellite to determine the photoemission vield. I'hus, the relevant formula is:
€ K ‘r(\‘(\S o)
8

where

€ - number of photoelectrons per unit time per unit surface area
solar illumination flux

a © angle of solar illumination with respect to normal to surface.

10
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I'he solar flux 1s essentially zero or one, depending upon whether the sector is in

shadow or not, while k 18 a photoemission coefficient which can be set to different
o

values for different sectors of the satellit,
Currently, the velocity spectrum of the emitted photoelectrons is assumed to
be a Maxwellian with the cosine angular dependence previously assumed for

secondaries,
1.3.5 PARTICLE BEAMS

Corresponding to the particle beams on the satellite, there is a routine which
emits particles from a localized region of the satellite in a beam pattern. The
beam pattern is given according to a 1 f, cos 0/8 law, for 0 <6 < B and the
velocity distribution of the beam particles can be chosen to be either monochro-
matic (v - v_for all particles) or Maxwellian (f(v) « \"Y exp (-v”) '._’\'i)), There
are effectively separate particle beams for itons and electrons, and, in addition to
# and r , the location, aiming direction, and current for each beam can be
specified.

An option is available by which the total charge emitted by the beams can be

linked to the total satellite charge, thus influencing the potential on the satellite.

2 ELECTROSTATIC POTENTIAL CALCULATIONS FOR A CYLINDRICAL
MOtk

2.1 Introduction

Recent investigations of spacecraft interaction with the surrounding plasma
have led to the development of a two-dimensional model for numerical simulations,
This model treats the spacecraft as an infinitely long cylinder and studies the
motion of particles in the cylindrical annulus between the spacecraft and an arbi-
trary boundary at some distance into the plasma. To represent the motion of the
particles properly, it is necessary to perform calculations of the electric field
which is established by the distribution of charges in the region and by imposed
potentials on the spacecraft. This section describes the potential calculation

method that has been implemented.

2.2 Poisson’s Equation

For a system with translational symmetry in the Z-direction (along the axis

of the spacecraft cylinder), Poissor's equation is:

[ J ¢
-}7—1:—; r-:ﬁfj ¢ -k Q-.Q; - ﬁ(—:'-ﬂ (MKS units)

(%]
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where the electrostatic potential is ¢, and p i1s the charge density (per unit area),

T'he charges are effectively infinitely long rods in this representation and interact

via a logarithmic potential,

Converting the above form of Poisson's equation to suitable form for a dis- |

crete grid gives:

9 !
A — = - 3

4 1. - o ed :

4 Ll 1 LY ! - ‘.'.J 1

3 q i

i

f

s(r o) ¢ (r. A ) and & 0= A r -, {

el Chot LU W I 5 i LB ] a3t =f i+1 1 ;

> = = 5 1 . (8-

r.. For a uniform interval in the radial grid points, this form pro- i

ficients of ¢, , 141 which depend on 1. However, if __\\ 1S propor- .

these coefficients are constant, e

’ [§

T'hus, letting & ar., so that D al2 + .,\x'x, Poisson's equation becomes ¢

1 1 1 3

& - g 4 53
2(1 + a) ) b 0 00 Y1 -1 i Pia ¥
- = \:‘ - _c . + o L - 1w ,‘L- s — - 2.

209 + o) 5 o 1, i-1, 52 € ;

f

;

This formulation corresponds to a transformation of the radial coordinate accord- B
’

ing to S In r, which gives f
) ) e f

Vo 16 ) {

=+ —% S

1S” 6~ A %

.’

~ 2 5 !
where r- p for the transformed density in (S, #) coordinates. }
i

The charge density is determined from the number of charges within a partic-

ular grid cell, but each charge is treated as being uniformly distributed over a
cell in (S, #) coordinates, rather than (r, #) coordinates. This is implemented by
assuming a charge density distribution g (‘” 1"2 for each m‘lll‘, normalized
according to f pr dr df Q.. and then \;smg::‘hv average of r’p over the cell for
the right side of Poisson's v{;uznh-n. Thus, :‘”,‘\ ; is replaced by
-q‘,‘ [6§ In (1 + @)] in the formula above.

‘Note that different charges within a cell do not interact, and only the net
charge within a cell contributes to the potential. Thus, the grid produces a poten- K

tial that is both "softer" (reduced short-range interaction) and "smoother"

(spatially averaged) than the actual interparticle interaction,




2.3 Boundary Conditions for the Model

In solving Poisson's equation, the boundary conditions must be specified at
some radius in the far plasma (RB) and over some surface on or within the space-
craft., The spacecraft itself is modeled as a conducting cylinder completely sur-
rounded by a dielectric layer. This allows the charge distribution on the surface
of the spacecraft to be that determined only by particle impacts and emission
mechanisms, yet allows for the specification of a unique fixed potential for the
spacecraft, Conceptually, therefore, the two boundaries are concentric cylinders
with a constant potential on each. However, neither potential is necessarily con-
stant in time. In particular, if the spacecraft potential is not fixed, it will ''float"
with respect to the outer boundary potential, depending on the charge distribution
in the intervening region.

If the boundary condition is left solely in terms of the potential on the interior
conducting cylinder (r - Ri), then the routine for solving Poisson's equation must
also involve the conditions at two interfaces: the conductor/dielectric interface
and the dielectric/vacuum interface. However, if the interior bourdary condition
i1s transformed into a specification of the potential on the outer surface of the
spacecraft (r - Rp), then Poisson's equation need only be solved over a homo-
geneous region.

This transformation can be accomplished by solving for the surface potential
for the case of an isolated charge, given the potential at the outer boundary and
the specification of the potential on the interior conductor ("' floating" or fixed
potential). The solution for an arbitrary charge distribution is then the appropriate
superposition of solutions for isolated charges. (This is essentially a Green's
function approach.)

For a charge q at (rc, GC), with ¢ - d)o at r = R.1 (the inner conducting cylinder)
and ¢ = ¢;atr - RB (the far plasma), the potential at (Rp' 0) (on the surface of the
spacecraft) is given by:

+

o]
3
~~
[85]

«b(Rp, 0) - a cSO +a, q)l +ag 5ac cosn (6 - Gc) .

i

n-=1
qr?
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where

k In (R_/Ry)
oo e e L RN
8) "«In(R /R, + In (R, /R )
peB D

In (R,/R.)
2 % In (l{p R“) +In (Rl {"

= In Te H“) In (Hl R

8 * TTn (R RO F (R JRD = "8 In(r /Ry
pt B ' p

and
D ) 2 D) 9 9 9 B
REM MRS - R - e @37 - eZhmET R
C q . ¢ p o) R (i) o | P \
n e '_'1‘\ ' .'.fl;' 2n 2n on n 2Ny 2N n
2me mv “‘I‘ ¢ H” )(”p - H‘ ) - K (HP - H" Nhl‘ ' Hl )

In principle, the summation should be extended to n @, but on a discrete grid it
I ple, ' ®

is restricted according to the number of angular sectors N (- 27/8).  For the case

of a floating potential on the spacecraftt, with a total charge Q| on the interior

cylinder,

W Rp R r
x In ipe tn i -

B P ane 1

Some modiftcations to the above expressions are required to accommodate
the convention of having the charges distributed over each cell, rather than as
discrete charges, This 18 accomplished by a superposition of the above solutions

for a charge density

3
D)
§ In (1 + ) r®

over the region
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This produces a potential J(I(p 0), with:

'\
_ AN n
b R“ 1
*\R® ! on e 8 R :
P 5 Ry (1 4 a)

where ay and a, are as before,

2 1
In (v Rn) -=1In(1+ a)

b, - In(R_/R) | —S—F 2
PO LI R R I (R TR )

; 5 ¢ ¢
i (RE - R - BRI+ REN
A R - 5
n P (R"" ..n)(HZn _ {;.n) = (“‘.in X ﬁn)(".‘n Ri‘.n)
and
2 9 .
2 (R}:‘; zn) E i ("‘;n g .Zn)
B, “p 2n | e ;n‘ M adb 2})_” 2n B 2h
(Rp )(R - Ry ) - x Hp - )(H R

The condition for a floating spacecraflt potential then becomes

Q. R R r
et s P i B IR SO b uin s o)
% " 91 "Taxe |10 (R Hin | 5 3ec [P (R B
B p B

The solution is now completely formulated, given a method of solving Poisson's
equation in rectangular coordinates. For this particular application, Iluvknv,\"s“
Fourier Analysis Cyclic Reduction Method was employed, The Fourier transform
routine for Hockney's programs is also used to obtain the superposition of solutions

for setting the boundary potentials at = R :
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